Section I. Multiple choice/Fill in the blank (1.25 points each)
(If there are no answers given below, you must write in the correct answer)

1. The molecular formula of the compound on the right is $\mathrm{CqH}_{15} \mathrm{ClO}$

2. A compound has the molecular formula of $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{ON}$. It has \qquad degrees of unsaturation.
(For partial credit, show your work)
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
(g) none of the above is correct
w / N subtract
IH per

$$
u=\frac{\left(2 x^{*} c+2\right)-(H+x)}{2}=\frac{(2 x 6+2)-(9+2-1)}{2}=2
$$

3. The compound below with the most degrees of unsaturation is compound \qquad .
(a) $u=2$
(b) $\quad u=0$

(c) $u=4$

$u=3$
$u=2$
(e)

$$
(4 \pi)
$$

$u=$ ring or π bond
(d)

($2 \pi, 1$ ring)
4. The diagram on the right indicates a \qquad c .
(a) sp^{4} hybridized atom
(b) sp^{3} hybridized atom
(c) sp^{2} hybridized atom
(d) sp hybridized atom
(e) a nonhybridized atom
(f) it's going to be a long test..

maxed $2 p{ }^{\prime}$, 1 p left unmixed
5. The diagram in Question 2 would be for $\mathrm{a}(\mathrm{n}) \quad \mathrm{P}$ atom with $1 \quad \pi$ bonds. p orbitals only thing (The first blank should be an atom, preferably one that occurs on the periodic table) \# bonds 5 vale- in $3^{\text {rd }}$ shell $\Rightarrow P$
6. The compound on the right has \qquad f π bonds.
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
(g) more than 5
(h) apple - yummy!!!!

7. The weakest covalent bond of those below is \qquad better ovelup of orbitals $=$ stronger bonds
(a) $\mathrm{C}-\mathrm{C}$
(b) $\mathrm{C}-\mathrm{Si}$
(c) $\mathrm{C}-\mathrm{As}$
(d) $\mathrm{C}=\mathrm{C}$
(big difference in size)
\qquad .
8. The correct order of bond lengths, from shortest to longest, is
(a) b $>$ c $>$ d $>$ a
(b) a $>$ d $>$ c $>$ b
(c) c $>$ b $>$ d $>$ a
(d) a $>$ d $>$ b $>$ c
(e) none of the above
(f) extra mayo and no onions

single $>$ double $>$ triple (since p orbitals need to get closer to make effective
bond) (b vs C, one C is $s p^{3}$, one is $s p^{3}$ or $s p$ shorter than $s p^{3}$ (less p character))
9. Bond angle $\quad b \quad$ in the structure that would be approximately 120°. (Note the structure on the right was drawn by a $3^{\text {rd }}$ grader and hence the bond angles you see in the structure might not be chemically correct)
(a) a
(b) b
(c) c
(d) none of the above

$$
\begin{array}{ll}
s p^{3} & 109.5^{0} \\
s p^{2} & 120^{\circ} \\
s p & 180^{\circ}
\end{array}
$$

10. The compound to the right contains a c, d, e, f (Note there is more than one correct answer for this question, but I only want one. For partial credit, circle the group in the structure.)
(a) alcohol
(b) aldehyde -
(c) amide
(d) amine
(e) carboxylic acid
(f) ester

11. The compound to the right contains a $a b \mathrm{~g} k$. (Note there is more than one correct answer for this question, but I only want one. For partial credit, circle the group in the structure.)
YOU MUST CHOOSE A DIFFERENT FUNCTIONAL GROUP THAN YOU CHOSE IN QUESTION 10.
(a) alcohol
(b) aldehyde
(d) amide
(e) carbexylie-aeid
(g) ether
(h) ketone
(c) amide
(f) ester

12. Given the pKa 's in the table below, at equilibrium there would be \qquad

(a) about 1:1 ratio of A to B
(b) about a 2:1 ratio of A to B
(c) about a 1:2 ratio of A to B

acid	pK
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$	10.4
$\mathrm{CH}_{3} \mathrm{CHNO}_{2}{ }^{\mathrm{L}}$	-12
NH_{3}	38
NH_{4}	8.4

larger oka $=$
(d) about a 10:1 ratio of A to B
(e) about a 1:10 ratio of A to B
weaker acid
(f) greater than a 10:1 ratio of A to B
(g) greater than 1:10 ratio of A to B ran goes to weaker acid
diff in $p k_{A}$ is 2 units but $p k_{A}$ base 10 unit so $10^{2}=100$
13. The strongest ACID of those listed below would be f.

$$
\left.\mathrm{H}-\mathrm{A} \rightleftarrows \mathrm{H}^{+} \mathrm{f}\right)+\mathrm{A}^{-}
$$

(a)
(b)
(c)
(d)
(c)

(g) you cannot determine this
H of heteroatoms usually mare acidic than H off C (c,de,f $>a, b)$ weaker $H A$ bond $=$ stronger acid $(e, f><d)$ (avelap) more stable A^{-}, stronger acid
14. The strongest BASE would be made by deprotonating compound \qquad a (f vs, resonance)

above.

$$
\begin{gathered}
\text { Strongest base comer from weakest acid } \\
\text { a vs b resonance }
\end{gathered}
$$

For questions 15-17, use the structures below
(a)

(b)

(c)

(d)

(e)

15. Compound (c) would have \qquad in terms of intermolecular forces with itself.
(a) dipole-dipole attractions
(b) hydrogen bonds
(c) London forces
(d) a and b
(e) a and c
(f) b and c
(g) a, b, c
16. The compound that would be MOST soluble in water would be \qquad .
most H-bonding
17. The compound that would be LEAST soluble in water would be \qquad .

$$
\begin{aligned}
& \text { least H-bonding } \\
& \text { most nonpolar }
\end{aligned}
$$

\qquad d .
(a)

dipoles all
cancel
(b)

dipoles
(c)

(d)

(e)

sum a, b gives re reinforces C

Questions 19-20 refer to the relationship of the compounds shown below to the compound shown in the box on the right.
(a)

(b)

(c)

(d)

coast. isomer
identical
19. The enantiomer of the compound in the box is \qquad d. all stereo switched
20. An diastereomer of the compound in the box is \qquad b . Some but not all changed

Questions 21-22 refer to the wily compounds caged up in the box below these 2 groups equal

21. There are \qquad has intemal mirror plane (reflects upon itself)
miso compounds in the box.
(For partial credit circle those that are mess)

protriptyline (a tricyclic antidepressant, unique in being energizing and used for ADHD)
so not astereocenter

has intemal mirror
\qquad chiral compounds the box.
22. There are
(For partial credit put a " Y " through those that are chiral))
23. The absolute stereochemistry in the compound shown on the right is \qquad c . (For partial credit, show your rankings)
and
(a) E
(b) Z
(c) R
(d) S
(e) there is none

$1 \int_{3}^{4} 2$
24. The absolute stereochemistry in the compound shown on the right is \qquad c

(a) E
(b) Z
(c) R
(d) S
(e) there is none

to be vertical

25. A compound below that is IDENTICAL to the compound on the right is b and c.

(d)
(e)
(c)

2

looks same but CANNOT tum

Fischer 90°
26. When discussing reactions, the $\Delta \mathrm{H}$ can be thought of as measuring the \qquad while the $\Delta \mathrm{S}$ can be thought of as measuring the \qquad c .

(please use one letter below for each blank)

(a) spontaneity of the reaction $-\Delta G$
(b) bond strength
(c) freedom of motion of the molecules
(d) speed of the reaction - this kinetics k
27. As the $\Delta \mathrm{G}$ of a reactant becomes more similar in value to the $\Delta \mathrm{G}$ of a product, the reaction will
\qquad C
(a) go more towards the product
(b) go more towards the reactant
(c) become an equilibrium reaction
(d) you cannot predict with only this info
28. According to the reaction coordinate diagram on the un-left, this reaction occurs in \qquad 4 steps and the rate-limiting step would be going from b to d.

$$
\begin{array}{cc}
\text { s.mat } \rightarrow b & \text { one that requires } \\
b \rightarrow d & \text { most energy between } \\
d \rightarrow \epsilon & 2 \text { structures } \\
f \rightarrow h & 5
\end{array}
$$

29. Reaction a^{a} below would be classified as an oxidation reaction.
(a)

(c)

(b)

(d)

0 added $\mathrm{OH}_{2}(\mathrm{red} n)$
30. A good example of a substitution reaction would be reaction \qquad c (For I pt extra credit, label ONE of the other reactions correctly.)
(a)

(b)

(c)

(d)

31. The MAJOR free radical halogenation product of the reaction below would be \qquad . occurs via most stable

(a)

least made

(c)

(e)

$$
\begin{aligned}
& \text { cannot be } \\
& \text { made since lost } \\
& C
\end{aligned}
$$

least made
32. The best part of this class is \qquad . (Note: no answer will be marked wrong on this one)
(a) dodging the chalk that somehow seems to be flying around in the room
(b) the really short and easy exams that don't cut into your social life at all
(c) the stares you get when you play with the models in the library
(d) the fact that it is over for 4 months

Section II. Nomenclature.

33. (12 points) For ONE of the compounds below..
(a) Circle all the stereocenters (both sp^{3} and sp^{2} in the compound)

(b) Now provide an acceptable name for this compound, including any depicted stereochemistry. (Note that these are the same compounds as above, just redrawn fresh for this part of the question).

Section III. Short answer.
34. (7 points) Rank the following compounds based on increasing boiling point, with 1 being the

34. (9 points) Note that you should only do parts (b) and (c) for ONE of the compounds below.
(a) Draw ONE Newman projection underneath the compound on the right, and ONE chair form underneath the compound on the left.

2 axial

(b) Now EITHER draw 3 more Newman projections, or the other chair conformer, AND rank them according to their relative energy, with 1 being the lowest energy conformer.

(a) Draw in any and all formal charges in ONE of the compounds below.

(b) Now draw two REASONABLE resonance structures for this compound, being sure to show any formal charges in these structures AS WELL AS arrows to show how to convert one resonance contributor into another. Note that your second resonance contributor must be from star tore derived from your first contributor for full credit.

(c) Circle the lowest energy and put an " X " through the highest energy conformers, and briefly explain your answer.
(d) So what does each resonance contributor structure represent, in terms of the real structure of

* 1 allots
\# 2 least " charges
* charges on proper atoms
- on electroneg
+ on electropos

39. (11 points) Spectroscopy
(a) Consider the ${ }^{\mathrm{l}} \mathrm{H}$ NMR signal shown on the right. Is this signal from a $\mathrm{CH}, \mathrm{a} \subset \mathrm{H}_{2}$, a $\mathrm{CH}_{3}, 2 \mathrm{CH}_{2}$'s, $2 \mathrm{CH}_{3}$'s, or none of the above?

$$
\begin{aligned}
& \text { integration of } 2 \mathrm{H} \\
& \text { (could be } 2 \mathrm{CH}^{\prime} \text { but this not option) }
\end{aligned}
$$

(b) Draw TWO different but possible 3-carbon fragments of a structure that would give this signal, considering both the integration and the splitting.

$$
\begin{aligned}
& n+1=5 \\
& n=4 \text { neighbors }
\end{aligned}
$$

Extra credit question (1 point)

Why would it NOT make chemical sense if this signal was found at 4.1 ppm ?
The shift suggests the H's on a C connected to heteroatom. con ont than have 3 H ad at

$$
\text { most } \quad \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \quad \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

(c) The compound also had the signal on the right. What does this suggest?

$$
\begin{aligned}
& \text { II } \begin{array}{l}
\text { aldehyde on } C \\
\text { W no adj } H
\end{array} ~
\end{aligned}
$$

(d) Now circle AND LABEL all the identifiable peaks in the IR spectrum below.

$$
\frac{(9 \times 2+2)-(16)}{2}=2
$$

(e) So draw a structure for a compound of a compound with the formula $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ that would give all the above fragments in the spectrum.

are other possible answers
(f) Now label each carbon in your structure, and indicate where it would appear in the ${ }^{13} \mathrm{C}$ NMR spectrum below.

Section IV. Reactions
41. (17.5 points) Alkenes

Draw the MAJOR product(s) / MISSING starting material for FIVE of the reactions shown below, being sure to carefully consider issues of regio- and stereo-selectivity. At LEAST ONE reaction must be from the next page (runs jim).
(a)

C. iso one here so add both
(b)

(c)

(d)

$1^{\text {st }}$ forms Ct^{t}

resonance (e)
d)

adds Br to more sub C if had

mess
(g)

H_{2}

1. ${ }^{s} \mathrm{BuBH}_{2}$
(h)

2. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}$
adds OH to less sub C

syn adorn

13 (mesa)
(j)

(k)

(1)

 (note: the starting material contains a carbonyl group in it already)
(m)

$\xrightarrow{\substack{\text { 1. } \mathrm{O}_{3} \\ \text { 2. } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}}}$

Splits
makes $\mathrm{H}>\mathrm{OH}$

40. (14 points) Alkyl halides.

SN 2 strong Nu bulky \Rightarrow elimin

For $\mathbf{F O U R}$ of the reactions shown below, fill in the oval with the correct reaction type (s) ($\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, SN2-Inversion
SNl-racemization
(a)
(b)

 30, weak the base

(c)

(d)

2° not a base
(e)
)

(f)

$E 2$ requires
anti H to X
(g)

2^{0}

bulky
weak
base

Section V. Mechanisms.

42. (11 points) Using curved arrow formulism, provide a reasonable mechanism for ONE of the reactions shown below.

43. (5 points) Polymerization reactions..
(a) Choose ONE polymerization initiation step below, and write in the box if it occurs by an anionic, cationic, or free radical mechanism

(b) Now for the reaction you chose, complete the structure of the intermediate shown above (to make it an anion, a cation, or a free radical)
(c) Finally, use curved arrows to show the mechanism of how two more monomer units would add to this intermediate to give a 3 -unit polymer.

